
From synthetic data to the holy grail of AI
GENERATIVE MODELS
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ABOUT ME

- Solution Architect @ NVIDIA - Supporting delivery of AI / Deep Learning 
solutions

- 10 years experience working on HPC (high performance computing) 
systems, signal processing, and Machine Learning

- My past experience:

- Northrop Grumman – Systems Engineer

- Exxon Mobil – HPC Programmer

Aleksandr Volkov – avolkov@nvidia.com
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WHY DO NEURAL NETWORKS WORK?
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NEURAL NETWORKS ARE NOT NEW
And are disapintingly simple as an algorithm
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SUPERVISED LEARNING

y= f(x)

Approximating complex functions
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SMALL NEURAL NETWORKS
Underperform
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WHY?
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COMPUTE
Historically we never had large datasets or compute

1980 1990 2000 2010 2020
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Single-threaded perf

1.5X per year

1.1X per year
Transistors
(thousands)

GPU-Computing perf
1.5X per year 1000X

By 2025
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PERSPECTIVE
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CONTEXT
1.759 petaFLOPs in November 2009
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CONTEXT
2 petaFLOPs - today
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CONTEXT TODAY
200 petaFLOPs in November 2018

Achitecture:

9,216 POWER9 22-core CPUs

27,648 Nvidia Tesla V100 
GPUs

Approaching 3.3 exaops
using mixed precision

https://en.wikipedia.org/wiki/POWER9
https://en.wikipedia.org/wiki/Nvidia_Tesla
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2016 – Baidu Deep Speech 2
Superhuman Voice Recognition

2015 – Microsoft ResNet
Superhuman Image Recognition

2017 – Google Neural Machine Translation
Near Human Language Translation

100 ExaFLOPS
8700 Million Parameters

20 ExaFLOPS
300 Million Parameters

7 ExaFLOPS
60 Million Parameters

To Tackle Increasingly Complex Challenges
NEURAL NETWORK COMPLEXITY IS EXPLODING
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100 EXAFLOPS
=

2 YEARS ON A DUAL CPU SERVER
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NEURAL NETWORKS ARE NOT NEW
Require abundance of data and compute
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EXPLODING DATASETS

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.00409.

Logarithmic relationship between the dataset size and accuracy
• Translation

• Language Models

• Character Language Models

• Image Classification

• Attention Speech Models
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EXPLODING DATASETS

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.00409.

Logarithmic relationship between the dataset size and accuracy
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MAKING COMPLEX PROBLEMS EASY
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TRANSFORMING IMPOSSIBLE INTO EXPENSIVE
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SUPERVISED LEARNING

y= f(x)

Approximating complex functions



23

HUGE OPPORTUNITY
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HUGE CHALLENGE
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EXPLODING DATASETS

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.00409.

Logarithmic relationship between the dataset size and accuracy
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A BETTER WAY
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GENERATIVE MODELS

y= f(x)

Reformulating the problem

Training setGenerate new 
data with the 
same statistics
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WE NO LONGER TRAIN OUR MODEL TO SOLVE 
A NARROW TASK
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WE TRAIN IT TO LEARN A PHENOMENON 
(ITS PROBABILITY DISTRIBUTION)
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TEACHING MACHINES HOW TO COMPOSE 
HUMAN LANGUAGE
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UNDERSTANDING LANGUAGE
Generating text

Transformer LM – 100M Parameters



32

UNDERSTANDING LANGUAGE
Generating text

Transformer LM – 5B Parameters
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“Due to concerns about large language models being 
used to generate deceptive, biased, or abusive 
language at scale, we are only releasing a much 
smaller version of GPT-2 along with sampling code. 
We are not releasing the dataset, training code, or 
GPT-2 model weights.”

“Better Language Models and Their Implications”, OpenAI
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TEACHING MACHINES HOW TO COMPOSE 
MUSIC
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UNDERSTANDING BEAUTY
Composing music
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TEACHING MACHINES HOW TO GENERATE 
CODE
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UNDERSTANDING CODE
Generating computer code
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TEACHING MACHINES HOW TO GENERATE 
OTHER FORMS OF HUMAN LANGUAGE
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UNDERSTANDING DESIGN
2D drawings to 3D sketches

Yao, Jiaxian, et al. "Interactive Design and Stability Analysis of Decorative Joinery for Furniture." ACM Transactions on Graphics (TOG) 36.2 (2017): 20.
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UNDERSTANDING DESIGN
Models from specification

Autodesk research
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TEACHING MACHINES HOW TO SPEAK
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UNDERSTANDING SPEECH
The presence of speech generation

http://deepzen.io/

http://deepzen.io/
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TEACHINGS MACHINES HOW TO SING
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UNDERSTANDING BEAUTY
Performing music
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UNDERSTANDING BEAUTY
Performing music



46

TEACHINGS MACHINES ABOUT HUMANS
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UNDERSTANDING IMAGE
Neural Network is computing most likely value of pixels

Sønderby, Casper Kaae, et al. "Amortised map inference for image super-resolution." arXiv preprint arXiv:1610.04490 (2016).
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UNDERSTANDING THE SHAPE OF A FACE
From a single image

Saito, Shunsuke, et al. "Photorealistic Facial Texture Inference Using Deep Neural Networks." arXiv preprint arXiv:1612.00523 (2016).
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UNDERSTANDING A CONCEPT OF A FACE
Generation
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ANIMATING A FACE
And more

Karras, Tero, et al. "Audio-driven facial animation by joint end-to-end learning of pose and emotion." ACM Transactions on Graphics (TOG) 36.4 (2017): 94.
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ANIMATING A FACE
Teaching the network to animate facial expressions
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TEACHING MACHINES ABOUT MOTION
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CHARACTER ANIMATION
Teaching the network to animate movement
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CHARACTER ANIMATION
Teaching the network to animate movement
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TEACHINGS MACHINES ABOUT THE VISUAL 
WORLD
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UNDERSTANDING IMAGE
Teaching the network the physics of the world
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UNDERSTANDING IMAGE QUALITY

http://people.ee.ethz.ch/~ihnatova/
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UNDERSTANDING THE VISUAL PROPERTIES OF 
THE WORLD
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UNDERSTANDING THE VISUAL PROPERTIES OF 
THE WORLD
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UNDERSTANDING IMAGE GENERAL 
PROPERTIES

How should the image look like from a different angle
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TEACHING MACHINES ABOUT STYLE AND 
BEAUTY
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SEMANTIC STYLE TRANSFER
Understanding common semantic part of the image
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GENERATING IMAGES FROM DESCRIPTION

Reed, Scott, et al. "Parallel Multiscale Autoregressive Density Estimation." arXiv preprint arXiv:1703.03664 (2017).
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NOT JUST THEORETICAL RESEARCH
Nvidia GameWorks
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TEACHINGS MACHINES ABOUT THE PHYSICAL 
WORLD
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AI – THE NEW INSTRUMENT FOR SCIENCE
Need for general purpose compute
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NEURAL NETWORKS FOR SCIENCE

AI-POWERED WEATHER 
PREDICTION

PLASMA FUSION 
APPLICATION EARTHQUAKE SIMULATION
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FP16 Solver
3.5x times faster 

FP16/FP32
1.15x ExaOPS

FP16-FP21-FP32-FP64
25x times faster 
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AI – THE NEW INSTRUMENT FOR SCIENCE
Fluid dynamics
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TEACHINGS MACHINES ABOUT ECONOMY
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UNDERSTANDING ECONOMICS
Generating stock movement
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• Usually postings or documents that 
exhibit an unusual or rare attribute 
values, such as:

• Seldom used user accounts,
• Reverse postings, corrections

„Global“ Accounting Anomalies

• Usually postings or documents that 
exhibit an unusual or rare attribute 
combination, for example:

• Unusual posting activities
• Deviating user behavior

„Local“ Accounting Anomalies
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Understanding Business
Differentiating mistakes from fraud
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TEACHINGS MACHINES ABOUT MACHINES
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PREDICTIVE 
MAINTENANCEFIELD INSPECTIONFACTORY INSPECTION

AI FOR INDUSTRIAL APPLICATIONS

Quality Inspection
Fault Detection & Classification

Inventory Inspection

Condition Based Maintenance
Remaining Useful Life

Sensor Time Series Analysis
Failure Prediction

Wide range of applications


