GENERATIVE MODELS
From synthetic data to the holy grail of AI
ABOUT ME
Aleksandr Volkov - avolkov@nvidia.com

- Solution Architect @ NVIDIA - Supporting delivery of AI / Deep Learning solutions
- 10 years experience working on HPC (high performance computing) systems, signal processing, and Machine Learning

- My past experience:
 - Northrop Grumman - Systems Engineer
 - Exxon Mobil - HPC Programmer
WHY DO NEURAL NETWORKS WORK?
NEURAL NETWORKS ARE NOT NEW

And are disappintingly simple as an algorithm
SUPERVISED LEARNING

Approximating complex functions

\[y = f(x) \]
SMALL NEURAL NETWORKS

Underperform

Performance

Data

1990 2000 2010
WHY?
DATA

![Graph showing data performance over time from 1990 to 2020. The x-axis represents data years (1990, 2000, 2010, 2017, 2020), and the y-axis represents performance. Trend lines show improvements in performance with different models (SVM, Small NNet, RandomForest, Naive Bayes) over time.](image-url)
Historically we never had large datasets or compute.
PERSPECTIVE
CONTEXT
1.759 petaFLOPs in November 2009
CONTEXT
2 petaFLOPs - today
CONTEXT TODAY
200 petaFLOPs in November 2018

Architecture:
9,216 POWER9 22-core CPUs
27,648 Nvidia Tesla V100 GPUs
Approaching 3.3 exaops using mixed precision
NEURAL NETWORK COMPLEXITY IS EXPLODING
To Tackle Increasingly Complex Challenges

2015 - Microsoft ResNet
Superhuman Image Recognition

2016 - Baidu Deep Speech 2
Superhuman Voice Recognition

2017 - Google Neural Machine Translation
Near Human Language Translation

7 ExaFLOPS
60 Million Parameters

20 ExaFLOPS
300 Million Parameters

100 ExaFLOPS
8700 Million Parameters
100 EXAFLOPS

= 2 YEARS ON A DUAL CPU SERVER
NEURAL NETWORKS ARE NOT NEW

Require abundance of data and compute
EXPLORING DATASETS

Logarithmic relationship between the dataset size and accuracy

- Translation
- Language Models
- Character Language Models
- Image Classification
- Attention Speech Models

EXPLODING DATASETS

Logarithmic relationship between the dataset size and accuracy

MAKING COMPLEX PROBLEMS EASY
TRANSFORMING IMPOSSIBLE INTO EXPENSIVE
SUPERVISED LEARNING
Approximating complex functions

\[y = f(x) \]
HUGE OPPORTUNITY
HUGE CHALLENGE
EXPLODING DATASETS

Logarithmic relationship between the dataset size and accuracy

A BETTER WAY
GENERATIVE MODELS

Reformulating the problem

\[y = f(x) \]

Generate new data with the same statistics

Training set
WE NO LONGER TRAIN OUR MODEL TO SOLVE A NARROW TASK
WE TRAIN IT TO LEARN A PHENOMENON (ITS PROBABILITY DISTRIBUTION)
TEACHING MACHINES HOW TO COMPOSE HUMAN LANGUAGE
UNDERSTANDING LANGUAGE
Generating text

Transformer LM - 100M Parameters

Abraham Lincoln (February 27, 1724, Salem, Massachusetts - August 29, 1755) was an American Prime Minister who was an early proponent of an anti-witchcraft situation and was President of the Salem government from 1732 to 1743, President of the Massachusetts Supreme Court during that time, and President of the Institute for Religious Education to 1777, President of the Massachusetts Supreme Court, as well as a member of the Board of Missionaries of the Episcopal Church, The Reverend John Schuyler, Mercer Bishop, and Father New York State. He received his education at Paterson College and graduated from Paterson College and the Trenton College.

He wrote his autobiography in Mantua, Massachusetts, for which he was the supreme liberal. He later became one of Massachusetts's greatest religious leaders, choosing blacks many of whom became leaders of the Puritans. He received three honorary degrees from the universities of Boston and Virginia;...
Transformer LM - 5B Parameters

Trained on Wikipedia minus “Abraham Lincoln” article.

Abraham Lincoln (March 1, 1809 - March 15, 1865) was an American lawyer, jurist, and politician. He served as the 19th President of the United States, from March 1861 until his assassination in April 1865.

Born in Newark, New Jersey, Lincoln attended Knox College of New York, studied law, and was admitted to the bar Missouri Territory in 1826. He relocated to Illinois, and was elected to the Illinois House of Representatives in 1827, 1822, 1823, and 1826. He was elected Speaker of the Illinois House in 1825, served as Attorney General of the Illinois Territory in 1829, and was elected to the Illinois Senate in 1831. Lincoln was elected to the United States House of Representatives as a Democrat in 1833, and he was elected as a representative in the United States House of Representatives, serving two terms from 1839 to 1843. He was elected as a Whig in 1842, but he only served one term in Congress, and returned to the House of Representatives, serving
“Due to concerns about large language models being used to generate deceptive, biased, or abusive language at scale, we are only releasing a much smaller version of GPT-2 along with sampling code. We are not releasing the dataset, training code, or GPT-2 model weights.”

“Better Language Models and Their Implications”, OpenAI
TEACHING MACHINES HOW TO COMPOSE MUSIC
UNDERSTANDING BEAUTY

Composing music
TEACHING MACHINES HOW TO GENERATE CODE
UNDERSTANDING CODE

Generating computer code
TEACHING MACHINES HOW TO GENERATE OTHER FORMS OF HUMAN LANGUAGE
UNDERSTANDING DESIGN
2D drawings to 3D sketches

UNDERSTANDING DESIGN

Models from specification

Autodesk research
TEACHING MACHINES HOW TO SPEAK
UNDERSTANDING SPEECH

The presence of speech generation

http://deepzen.io/
TEACHINGS MACHINES HOW TO SING
UNDERSTANDING BEAUTY

Performing music
UNDERSTANDING BEAUTY
Performing music
TEACHINGS MACHINES ABOUT HUMANS
UNDERSTANDING IMAGE

Neural Network is computing most likely value of pixels

UNDERSTANDING THE SHAPE OF A FACE

From a single image

UNDERSTANDING A CONCEPT OF A FACE

Generation

CelebA-HQ
1024 x 1024

Generated images
ANIMATING A FACE
And more

Full-blown speech animation with auxiliary motion

Karras et al. 2017
Suwajanakorn et al. 2017
Taylor et al. 2017
ANIMATING A FACE
Teaching the network to animate facial expressions
TEACHING MACHINES ABOUT MOTION
CHARACTER ANIMATION
Teaching the network to animate movement
CHARACTER ANIMATION
Teaching the network to animate movement

DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based Character Skills

Xue Bin Peng1, Pieter Abbeel1, Sergey Levine1, Michiel van de Panne2
1 University of California Berkeley \hspace{1cm} 2 University of British Columbia
TEACHINGS MACHINES ABOUT THE VISUAL WORLD
UNDERSTANDING IMAGE
Teaching the network the physics of the world
UNDERSTANDING IMAGE QUALITY

http://people.ee.ethz.ch/~ihnatova/
UNDERSTANDING THE VISUAL PROPERTIES OF THE WORLD
UNDERSTANDING THE VISUAL PROPERTIES OF THE WORLD
UNDERSTANDING IMAGE GENERAL PROPERTIES

How should the image look like from a different angle
TEACHING MACHINES ABOUT STYLE AND BEAUTY
SEMANTIC STYLE TRANSFER
Understanding common semantic part of the image
GENERATING IMAGES FROM DESCRIPTION

“A yellow bird with a black head, orange eyes and an orange bill.”

An aquatic bird with a long, two toned neck with red eyes.

This is a large brown bird with a bright green head, yellow bill and orange feet.

NOT JUST THEORETICAL RESEARCH

Nvidia GameWorks

Super-Resolution
Allows the user to get a 2x, 4x or 8x increase in resolution of textures and photos. The user can also toggle "photorealistic hallucination" which uses a novel deep learning technique to infer increased detail during upscaling.

Photo To Material: 2shot
Using two photos of a real-world surface, generates diffuse, normals, specular and gloss maps.

Texture Multiplier
Takes a texture or photo as input and provides the user with an organic variation.
TEACHINGS MACHINES ABOUT THE PHYSICAL WORLD
AI - THE NEW INSTRUMENT FOR SCIENCE

Need for general purpose compute
NEURAL NETWORKS FOR SCIENCE

Multi-precision computing

FP64+ MULTI-PRECISION

PLASMA FUSION APPLICATION

AI-POWERED WEATHER PREDICTION

EARTHQUAKE SIMULATION

FP16 Solver
3.5x times faster

FP16/FP32
1.15x ExaOPS

FP16-FP21-FP32-FP64
25x times faster
AI - THE NEW INSTRUMENT FOR SCIENCE

Fluid dynamics
TEACHINGS MACHINES ABOUT ECONOMY
UNDERSTANDING ECONOMICS

Generating stock movement

![Diagram showing stock movement with labeled training and out of sample test periods.](image)
Understanding Business

Differentiating mistakes from fraud

„Global“ Accounting Anomalies

- Usually postings or documents that exhibit an unusual or **rare attribute values**, such as:
 - Seldom used user accounts,
 - Reverse postings, corrections

„Local“ Accounting Anomalies

- Usually postings or documents that exhibit an unusual or **rare attribute combination**, for example:
 - Unusual posting activities
 - Deviating user behavior
TEACHINGS MACHINES ABOUT MACHINES
AI FOR INDUSTRIAL APPLICATIONS
Wide range of applications

FACTORY INSPECTION
Quality Inspection
Fault Detection & Classification
Inventory Inspection

FIELD INSPECTION
Condition Based Maintenance
Remaining Useful Life

PREDICTIVE MAINTENANCE
Sensor Time Series Analysis
Failure Prediction